\qquad
Notes 2-1 Quadratic Equations
Date:
Period:

Solving Quadratic Equations Review

Some quadratic equations can be solved by \qquad .
Others can be solved just by using \qquad .
ANY quadratic equation can be solved by using \qquad .

Solving by Finding Square Roots
a. $4 x^{2}+10=46$
b. $3 x^{2}-5=25$

Determining Dimensions

While designing a house, an architect used windows like the one shown here. What are the dimensions of the window if it has 2766 square inches of glass?

Solving a Perfect Square Trinomial Equation

What is the solution of $x^{2}+4 x+4=25$?

Factor the Perfect Square Trinomial

Find Square Roots

Rewrite as two equations

Solve for x

Completing the Square

If $x^{2}+b x$ is not part of a perfect square trinomial, you can use the coefficient b to find a constant c so that $x^{2}+b x+c$ is a perfect square. When you do this, you are \qquad . The diagram models this process.

You can form a perfect square trinomial from $x^{2}+b x$ by adding $\left(\frac{b}{2}\right)^{2}$.

$$
x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}
$$

Example: What value completes the square for $x^{2}-10 x$? Justify your answer.

Solving an Equation by Completing the Square

1. Rewrite the equation in the form $x^{2}+b x=c$. To do this, get all terms with the variable on one side of the equation and the constant on the other side. Divide all the terms of the equation by the coefficient of x^{2} if it is not 1 .
2. Complete the square by adding $\left(\frac{b}{2}\right)^{2}$ to each side of the equation.
3. Factor the trinomial.
4. Find square roots.
5. Solve for x.

Example 1 - What is the solution of $3 x^{2}-12 x+6=0$?

Example 2 - What is the solution of $2 x^{2}-x+3=x+9$?

Writing in Vertex Form

What is $y=x^{2}+4 x-6$ in vertex form? Name the vertex and y-intercept.
\qquad
Notes 2-2 Real and Imaginary Numbers Date: Period: \qquad
Deriving the Quadratic Formula
$a x^{2}+b x+c=0$

	Divide each side by a.
	Rewrite so all terms containing x are on one side.
	Complete the Square.
	Factor the perfect square trinomial. Also simplify.
	Find square roots.
	Solve for x. Also simplify the radical.
	Simplify.

The Discriminant

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If $b^{2}-4 a c$

- is greater than zero, then
- is equal to zero, then \qquad
- is less than zero, then \qquad

Non-real solutions to the quadratic formula are known as \qquad

Essential Understanding

The complex numbers are based on a number whose square is \qquad .

The \qquad is the complex number whose square is -1 . So, \qquad , and
\qquad .

Square Root of a Negative Real Number

For any positive number $a, \sqrt{-a}=\sqrt{-1 \cdot a}=\sqrt{-1} \cdot \sqrt{a}=i \sqrt{a}$.

$$
\sqrt{-5}=\quad \text { Note that }(\sqrt{-5})^{2}-(i \sqrt{5})^{2}-i^{2}(\sqrt{5})^{2}--1 \cdot 5=-5(\text { not } 5)
$$

Simplify a Number Using i

How do you write $\sqrt{-18}$ by using the imaginary unit i ?

Multiplication Property of Square Roots
Definition of i
Simplify.

An \qquad is any number of the form $a+b i$, where a and b are real numbers and $b \neq 0$.

Key Concept Complex Numbers

You can write a complex number in the form $a+b i$, where a and b are real numbers.

If $b=0$, the number $a+b i$ is a real number.

If $a=0$ and $b \neq 0$, the number $a+b i$ is a pure imaginary number.
$\underset{\substack{a \\ \text { Real } \\ \text { part } \\ \text { Imaginary } \\ \text { part }}}{\uparrow}$

Complex Numbers (a $+b i$)

Real	Imaginary Numbers $(a+b i, b \neq 0)$
Numbers $(a+0 i)$	Pure Imaginary Numbers $(0+b i, b \neq 0)$

Complex Number Plane

In the \qquad $\xrightarrow{ }$ \qquad the point (a, b) represents the complex number $a+b i$. To
 graph a complex number, locate the \qquad part on the \qquad axis and the
\qquad part on the \qquad axis.

The \qquad of a complex number is
its distance from the origin in the complex plane.

$$
|a+b i|=\sqrt{a^{2}+b^{2}}
$$

Graphing in the Complex Number Plane

What are the graph and absolute value of each number?
A. $-5+3 i$
B. $6 i$

Adding and Subtracting Complex Numbers

To add or subtract complex numbers, combine the real parts and the imaginary parts separately. The associative and commutative properties apply to complex numbers. What is each sum or difference?
A. $(4-3 i)+(-4+3 i)$
B. $(5-3 i)-(-2+4 i)$

Multiplying Complex Numbers

You multiply complex numbers $a+b i$ and $c+d i$ as you would multiply binomials. For imaginary parts $b i$ and $d i,(b i)(d i)=b d(i)^{2}=b d(-1)=-b d$.
Example: What is each product?
A. $(3 i)(-5+2 i)$
B. $(4+3 i)(-1-2 i)$
c. $(-6+i)(-6-i)$

The solution to this problem is a real number.
Number pairs of the form $a+b i$ and $a-b i$ are \qquad .
The product of these types of pairs is a real number.

$$
(a+b i)(a-b i)=a^{2}-(b i)^{2}=a^{2}-b^{2} i^{2}=a^{2}-b^{2}(-1)=a^{2}+b^{2}
$$

Dividing Complex Numbers

You can use complex conjugates to simplify quotients of complex numbers.
What is each quotient?

A. $\frac{9+12 i}{3 i}$	B. $\frac{2+3 i}{1-4 i}$

Finding Pure Imaginary Solutions

What are the solutions of $2 x^{2}+32=0$?

Finding Imaginary Solutions
What are the solutions of $2 x^{2}-3 x+5=0$?
\qquad
\qquad Period \qquad
Each of these functions is a polynomial function:
a) $f(x)=x^{3}$
b) $f(x)=7 x^{2}-2 x$
c) $f(x)=5 x^{3}+2 x-12$
d) $f(x)=\frac{3}{4} x^{2}-5 x+7.9$

Each of these functions is NOT a polynomial function:
e) $f(x)=23 x^{2 / 3}$
f) $f(x)=26^{*}(.5)^{x}$
g) $f(x)=\sqrt{x}$
h) $\frac{1}{x^{3}}$

A polynomial function \qquad
\qquad
\qquad

Definition of a Polynomial Function -

A polynomial function is \qquad
whose exponents are \qquad .

Standard Form of a Polynomial Function

$g(x)=3 x^{2}+4 x^{5}+x-x^{3}+6$ is a \qquad function. (Recall that even 6 can be written as __.) However, $\mathrm{g}(\mathrm{x})$ is not written in standard form. The standard (or general) form for $g(x)$ is \qquad .

For a polynomial to be in standard form, \qquad

Polynomials have the following characteristics:
a) Degree:
b) \# of Terms:
c) Leading Term:
d) Leading Coefficient:
e) Constant Term:

Ex 1) Are the following functions polynomial functions? If so, put them in standard form and state a) the degree, b) \# of terms, c) leading term, d) leading coefficient, and e) constant term. If not, then tell why not.
a) $y=3 x^{2}+5$
b) $y=4 x^{2}-7 \sqrt{x^{9}}+10$
c) $y=5^{x}-2$
d) $y=7 t^{2}-8 t+6$
e) $y=3.1-8 x^{2}+5 x^{5}-12.3 x^{4}$
f) $y=x^{2}+5 x$

Large-Scale Behavior of Polynomial Functions
Ex.2) Consider the polynomial $f(x)=3 x^{2}+x+6$.
a) What is the value of $f(x)$ when $x=2$? \qquad What is the value of just the leading term when $\mathrm{x}=2$? \qquad
Notice that when $x=2$, the value of the leading term makes up \qquad of the value of the whole polynomial.
b) What is the value of $f(x)$ when $x=100$? \qquad What is the value of just the leading term when $\mathrm{x}=100$? \qquad
Notice that when $x=100$, the value of the leading term makes up \qquad of the value of the whole polynomial.

In general, if x is \qquad , we can estimate the value of a polynomial by calculating the value of \qquad .
Thus, for the function $f(x)$, for large values of x, the algebraic expression " $3 x^{2}$ " is approximately equal to $3 x^{2}+x+6$.

If this is what happens numerically, what would you think would happen graphically?

Ex 1: Compare the graphs of the polynomial functions f, g, and h given by...
$f(x)=x^{4}-4 x^{3}-4 x^{2}+16 x$
$g(x)=x^{4}+x^{3}-8 x^{2}-12 x$
$h(x)=x^{4}-4 x^{3}+16 x-16$
On a large scale they all resemble the graph of ...

On a smaller scale, the graphs look like...

Zeros of a Polynomial Function

The zeros of a function are the values of \qquad that make \qquad equal zero (that is, the values of \qquad that make the \qquad equal zero).
The zeros of a function are also sometimes referred to as:

The total number of zeros that a polynomial function has is always equal to the \qquad of the polynomial. Also note that every \qquad corresponds to a \qquad . For example, if $x=2$ is a
\qquad then
$x-2$ is a \qquad .

Bumps/Turns

Polynomial functions also have another characteristic that we refer to as bumps or turns. A \qquad corresponds to a change in direction for the graph of a function. Between any two consecutive \qquad there must be a \qquad because the graph would have to change direction or turn in order to cross the x -axis again.

How does the number of bumps/turns compare to the number of zeros?
Type of polynomial
Typical graph shape
\# of zeros \# of bumps
$2^{\text {nd }}$ degree
$3^{\text {rd }}$ degree
$4^{\text {th }}$ degree

Multiple Zeros

Consider the functions $f(x)=x^{2}-8 x+16$ and $g(x)=x^{3}+3 x^{2}+3 x+1$. How many zeros should $f(x)$ have? \qquad What about $\mathrm{g}(\mathrm{x})$? \qquad Now look at the graphs on your calculator and determine what the actual zeros are.

For $\mathrm{f}(\mathrm{x})$ we say that $\mathrm{x}=$ \qquad is a \qquad root and for $\mathrm{g}(\mathrm{x})$ we say that $\mathrm{x}=$
\qquad
is a \qquad root.

If the graph of a polynomial function \qquad off the x-axis, then the zero at that point will be repeated an \qquad number of times.

If the graph of a polynomial function crosses the x -axis but looks \qquad there, then the zero at that point will be repeated an \qquad number of times.
Ex 1) Identify the zeros (roots) and factors of the following polynomials.

Polynomials in Factored Form

If we know the zeros of a polynomial function then we can write the polynomial in factored form, and can use the factored form to come up with a formula for the polynomial.

Factored Form for a polynomial is $f(x)=$ \qquad (and so on depending on the number of factors) where a is \qquad and the "r's" are \qquad

Ex. 2) Find a formula for this polynomial.

Maximum and Minimum Values of a Polynomial Function

Another important characteristic of polynomial functions is their maximum or minimum y -values. Polynomials may have a \qquad maximum or a \qquad minimum, which means a maximum or minimum value within a particular range of x-values. They may also have an
\qquad maximum or an \qquad minimum, which means a y-value that is a maximum or minimum over the entire domain of the polynomial.

Ex 2) Sketch a graph of $h(x)=x^{4}+x^{3}-8 x^{2}-12 x$ and identify any maximum or minimum values.
\qquad

Finding the \qquad of a polynomial function will help you:
-
-
-

Writing a Polynomial in Factored Form

What is the factored form of $x^{3}-2 x^{2}-15 x$?

	Factor out the GCF, x.
	Factor $x^{2}-2 x-15$
Check:	
	Multiply $(x-5)(x+3)$
	Distributive Property

Roots, Zeros, and x-intercepts
The following are equivalent statements about a real number b and a polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.
-
-
-

Finding Zeros of a Polynomial Function

What are the zeros of $y=(x+2)(x-1)(x-3)$?
Use the Zero-Product Property to find the zeros.

Factor Theorem

The Factor Theorem describes the relationship between the \qquad of a polynomial and the \qquad of a polynomial.

Factor Theorem

The expression $x-a$ is a factor of a polynomial if and only if the value a is a zero of the related polynomial function.

Writing a Polynomial Function From Its Zeros

A. What is a cubic polynomial function in standard form with zeros $-2,2$, and 3 ?
B. What is a quartic polynomial function in standard form with zeros $-2,-2,2$, and 3 ?

Graph both functions.

1. How do the graphs differ?
2. How are they similar?

Multiple Zeros -

Zero of multiplicity -

How Multiple Zeros Affect a Graph

If a is a zero of multiplicity n in the polynomial function \qquad then the \qquad of the graph at the x-intercept a will be:
-
-
-
-

Finding the Multiplicity of a Zero
What are the zeros of $f(x)=x^{4}-2 x^{3}-8 x^{2}$?

What are their multiplicities?

How does the graph behave at these zeros?

Notes 2-5 Solving Polynomials Equations

 Date\qquad
\qquad Period

To solve a polynomial equation by factoring:

1. Write the equation in the form \qquad for some polynomial function P.
2. Factor \qquad . Use the Zero Product Property to find the \qquad ـ.

Solving Polynomial Equations Using Factors

What are the real or imaginary solutions of each polynomial equation?
A. $2 x^{3}-5 x^{2}=3 x$

	Rewrite in the form $P(x)=0$.
	Factor out the $G C F, x$.
	Factor $2 x^{3}-5 x^{2}=3 x$
	Zero Product Property
	Solve each equation for x.

B. $3 x^{4}+12 x^{2}=6 x^{3}$

	Rewrite in the form $P(x)=0$.
	Multiply by $\frac{1}{3}$ to simplify
	Factor out the GCF, x^{2}
	Zero Product Property
	Use the Quadratic Formula

Polynomial Factoring Techniques	
Techniques	Examples
Factoring out the GCF	
Quadratic Trinomials	
Perfect Square Trinomials	
Sactor by Grouping	

The sum and difference of cubes is a new factoring technique.

Why it Works

$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$

	Add 0.
	Factor out $a^{2},-a b$, and b^{2}.
	Factor out $(a+b)$.

Solving Polynomial Equations by factoring

What are the real and imaginary solutions of each polynomial equation?
A. $x^{4}-3 x^{2}=4$

	Rewrite in the form $P(x)=0$.
	Let $a=x^{2}$.
	Factor.
	Replace a with x^{2}.
	Factor $x^{2}-4$ as a difference of squares

B. $x^{3}=1$

	Rewrite in the form $P(x)=0$.
	Factor the difference of cubes.

Your Turn

1. $x^{4}=16$
2. $x^{3}=8 x-2 x^{2}$
3. $x\left(x^{2}+8\right)=8(x+1)$

Finding Real Roots by Graphing
What are the real solutions of the equation $x^{3}+5=4 x^{2}+x$?

Use INTERSECT feature	Use ZERO feature

Math III Unit 2: Polynomials
Name \qquad
Date \qquad Period

The degree of a Power Function is
\qquad
\qquad
The leading coefficient is \qquad
\qquad

The end behavior of a power function \qquad
\qquad

Constant: \qquad

Linear: \qquad

Quadratic: \qquad

Cubic: \qquad

Quartic: \qquad

Quintic: \qquad

Radical: \qquad

Power Functions

Each of these functions is a power function:
a) $f(x)=x^{-3}$
b) $f(x)=-7 x^{2}$
c) $f(x)=23 x^{\frac{2}{3}}$
d) $f(x)=\frac{3}{4} x$
e) $f(x)=\sqrt{x}$

Each of these functions is NOT a power function:
f) $f(x)=5 x^{3}+2 x$
g) $f(x)=26(.5)^{x}$

A power function \qquad
A power function \qquad
Definition of a Power Function - a power function has the form \qquad ,
where k \& p are \qquad
and k \& p can be \qquad , or \qquad -.

Ex 1: Which of the following are power functions? If it is a power function, state the value of k and p. If it is not a power function, explain why.
a) $f(x)=13 \sqrt[3]{x}$
b) $g(x)=2(x+5)^{2}$
c) $h(x)=(x+3)(x-3)+9$
d) $u(x)=\sqrt{\frac{25}{x^{3}}}$
e) $v(x)=6 \cdot 3^{x}$

Ex 2. Below are the graphs of two power functions.

a) Which graph would match the power function $f(x)=3 x^{4}$ and which would match the power function $g(x)=-2 x^{7}$?
b) Name two other power functions which would also match the shape of these two graphs.

Ex. 3) Below are the graphs of two power functions.

a) Which graph would match the power function $f(x)=x^{\frac{1}{2}}$ and which would match the power function $g(x)=x^{\frac{1}{8}}$?
b) Name two other power functions which would also match the shape of these two graphs.
\qquad

Dividing Polynomials Using Long Division

We will be doing a quick review of long division since we need to know this when working with rational functions. To divide using long division we do the same steps as if we are working with numbers.

EXAMPLE: Divide by using long division: 3453 / 13 .

EXAMPLE: Divide by using long division: $\left(2 x^{2}+3 x-35\right) \div(x+5)$

EXAMPLE: Divide by using long division: $\left(3 x^{3}+x+5\right) \div(x+1)$

EXAMPLE: Divide by using long division: $\left(x+3 x^{3}-x^{2}-2\right) \div\left(x^{2}+2\right)$

EXAMPLE: Divide by using long division: $\left(-3 x^{4}-2 x-1\right) \div(x-1)$

Synthetic Division - The Shortcut for Dividing by ($\mathbf{x} \mathbf{- c}$)

When dividing a polynomial $f(x)$ by a linear factor ($x-c$), we can use a shorthand notation. saving steps and space. Here is the procedure:

Procedure For Synthetic Division of $f(x)$ by $(x-c)$:

1. Write the value of "c" and the coefficients of $f(x)$ in a row. For example, if we divided $f(x)=3 x^{3}+2 x-1$ by $(x-4)$ we would write
4 $\begin{array}{llll}3 & 0 & 2 & -1\end{array}$
2. Carry down the first coefficient. In this case carry down the 3 .

3. Multiply this carried down coefficient by the value of c. In this case, multiply $3 \boldsymbol{\bullet} 4=12$. Place this result in the next column.

4. Add the column entries and place result at bottom. In this case you add $0+12$ to get 12. Multiply this addition result by " c " and place in next column. In this case you multiply $12 \cdot 4=48$.

5. Repeat Step 4 for all columns. In this example, you get

4 | 4 | 0 | 2 | -1 |
| ---: | ---: | ---: | ---: |
| 4 | 12 | 48 | 200 |
| | 12 | 50 | 199 |

6. The bottom row of numbers reveals the answer along with the remainder. In this case, the numbers 31250199 indicate an answer of
$3 x^{2}+12 x+50$ r 199 or $3 x^{2}+12 x+50+199 /(x-4)$

Math III Unit 2: Polynomials
Notes 2-8 Polynomial Theorems

Name
Date \qquad Period \qquad

There are \qquad theorems to know about \qquad :

1. \qquad
2.
3.
4. \qquad
Consider the following:
Example 1: $x^{3}-5 x^{2}-2 x+24=0$
This equation factors to:

The roots therefore are: \qquad , \qquad

What do you notice?

Example 2: $24 x^{3}-22 x^{2}-5 x+6=0$
This equation factors to:

The roots therefore are: \qquad , \qquad

What do you notice?

Both the \qquad and the \qquad of a polynomial can play a key role in identifying the or the related polynomial equation.

This role is expressed in the \qquad

If \qquad is in simplest form and is a rational root of the polynomial equation $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0} x^{0}=0$, with \qquad then \qquad must be a factor of \qquad and \qquad must be a factor of \qquad
So for any polynomial:
If \qquad
then \qquad and \qquad .

Example 3: Finding Rational Roots

Find the rational roots of $x^{3}+x^{2}-3 x-3=0$
Step 1: List the possible rational roots.
The leading coefficient is \qquad The constant term is \qquad . By the Rational Root Theorem, the only possible roots of the equation have the form

The factors of \qquad are \qquad and \qquad . The factors of \qquad are
\qquad . The only possible rational roots are \qquad and \qquad .

Step 2: Test each possible rational root.
Tes \dagger \qquad :
\qquad :

Tes \dagger \qquad :

Test \qquad :

YOU TRY: Find the rational root s of $x^{3}-4 x^{2}-2 x+8=0$

Example 4: Using the Rational Root Theorem
Find the roots of $2 x^{3}-x^{2}+2 x-1=0$.
Step 1: List the possible rational roots.

Step 2: Test each possible rational root until you find the root.

Tes \dagger \qquad :

Test \qquad :

Step 3: Use synthetic division with the root you found in Step 2 to find the quotient.

Step 4: Find the roots of $2 x^{2}+2=0$

Conjugates:

\qquad

Irrational Root Theorem:

Let \qquad and \qquad be rational numbers and let \qquad be an \qquad number. If \qquad is a root of a polynomial equation with
\qquad then the conjugate \qquad is
also a root.
Example 5: Finding Irrational Roots
A polynomial equation with integer coefficients has the roots \qquad and \qquad _.

Find two additional roots.
By the \qquad
\qquad if \qquad
is a root then, its conjugate \qquad is also a root. If is a root, then its conjugate \qquad also is a root.

YOU TRY: Find the Irrational Roots
A polynomial equation with rational coefficients has the roots $2-\sqrt{ } 7$ and $\sqrt{ } 5$. Find two additional roots.

Imaginary Root Theorem - If the \qquad number \qquad is a root of a polynomial with \qquad
\qquad then the conjugate also is a root.

What theorem have we already studied that sounds like the Imaginary Root Theorem? \qquad
If a \qquad P can be written as a product of its linear factors, $P(x)=a\left(x-\boldsymbol{r}_{1}\right)\left(x-\boldsymbol{r}_{2}\right) \ldots\left(x-\boldsymbol{r}_{k}\right)=0$ then $r_{1}, r_{2}, \ldots, \boldsymbol{r}_{\varepsilon}$ are roots of $\mathrm{P}(x)=0$.

If we were to FOIL out a polynomial with real coefficients with imaginary roots, it would be a polynomial with not imaginary numbers.

$$
(x-[a+b i])(x-[a-b i])
$$

Example: If a polynomial with real coefficients has $5,7 i$,and $\sqrt{5}-i$ among its roots, name at least two other roots.

Descartes' Rule of Signs

Let $P(x)$ be a polynomial with real \qquad written in \qquad form.

The number of \qquad real roots of $P(x)=0$ is either equal to the number of sign changes between consecutive coefficients of $P(x)$ or less than that by an even number.

The number of \qquad real roots of $P(x)=0$ is either equal to the number of sign changes between consecutive coefficients of $P(-x)$ or less than that by an even number.

A possible number of positive real roots for

$$
x^{4}-x^{3}+x^{2}-x+1
$$

Example $2 x^{4}-x^{3}+3 x^{2}-1-0$

Possible Positive Real Roots:

Possible Negative Real Roots:
\qquad
\qquad Period \qquad

Function Operations

You can \qquad
\qquad
\qquad , and \qquad functions based on how you perform these operations for real numbers. One difference is that you must consider the \qquad of each function.

Function Operations	
Addition	
Subtraction	
Multiplication	
Division	
The domains of the sum, difference, product, and quotient functions consist of the x - values that are in the domains of both f and g. The domain of the quotient does not contain any x-value for which $g(x)=0$.$\$.$	

Adding and Subtracting Functions
Let $f(x)=4 x+7$ and $g(x)=\sqrt{x}+x$. What are $f+g$ and $f-g$? What are their domains?

Multiplying and Dividing Functions

Let $f(x)=x^{2}-9$ and $g(x)=x+3$. What are $f \bullet g$ and $\frac{f}{g}$ and their domains?

Composite Function

The diagram shows what happens when you apply one function $g(x)$ after another function $f(x)$.

The \qquad from the first function becomes the \qquad for the second function.

When you combine two functions as in the diagram, you form a \qquad .

Composition of Functions

The composition of function g with function f is written as $f \circ g$ and is defined as $(g \circ f)(x)=g(f(x))$.

The domain of $g \circ f$ consists of the x-values in the domain of f for which $f(x)$ is in the domain of g.

$$
g \circ f=g(f(x))
$$

Composing Functions

Let $f(x)=x-5$ and $g(x)=x^{2}$. What is $(g \circ f)(-3)$?

Method 1	Method 2

Additional Examples:

$$
\begin{aligned}
& f(x)=2 x+5 \\
& g(x)=x^{2}-3 x+2
\end{aligned}
$$

1. $-2 g(x)+f(x)$
2. $4 f(x)+2 g(x)$
3. $\frac{5 f(x)}{g(x)}$

$$
\begin{aligned}
& f(x)=2 x \\
& g(x)=x^{2}=4
\end{aligned}
$$

Find the following:

1. $(g \circ f)(1)$
2. $(g \circ f)(-5)$
3. $(g \circ g)(a)$
4. $(f \circ f)(a)$
\qquad
Notes 2-10 Inverse Functions \qquad Period \qquad
If a \qquad pairs elements \qquad of its domain to element \qquad of its range, the \qquad pairs b with a. So, (a, b) is an ordered pair of a relation, then (b, a) is an ordered pair of an inverse.

The diagram shoes a relation r and its inverse.

The range of the relation is the domain of the inverse, and the domain of the relation is the range of the inverse.

Example 1: Finding the Inverse of a Relation

a. Find the inverse of relations.

Relations

x				
y				

Inverse of Relations

x				
y				

the x and y values to get the \qquad .
b. Graph s and its inverse.

YOU TRY:
Find the Inverse!
Graph the relation and it's inverse.

x	-1	0	1	2
y				

Example 2: Interchanging x and y
Find the inverse of $\quad y=x^{2}+3$

a. Does $y=x^{2}+3$ define a function? Is its inverse a function? Explain.
b. Find the inverse of $y=3 x-10$. Is the inverse a function? Explain.

Example 3: Finding an Inverse Function
Let's take a look at the function,

$$
f(x)-\sqrt{x+1}
$$

a. Find the domain and the range of $f(x)$.
b. Find f^{-1}.
c. Find the domain and range of f^{-1}.
d. If f^{-1} a function? Explain.

Example 4: Real-World Connection

The function ${ }^{d-\frac{2}{24}}$ is a model for the distance d in feet that car with locked brake skids in coming to a complete stop from a sped of $\mathrm{rmi} / \mathrm{h}$. Find the inverse pf the function. What is the best estimate of the speed of a car that made a skid mark 114 feet long?

