\qquad
\qquad Period
\qquad
The Fundamental Principle of Counting
How many different outfits could you put together using two sweaters, four pairs of pants, and two pairs of shoes?

Bot method $S=$ Sweaters
 $P=p a n t s$ $h=$ shoes
$3456^{h \prime \prime}{ }^{h} \%$
The Fundamental Principle of Counting says: Suppose there are "a"_ ways of choosing one item, and \qquad "b" ways of choosing a second item, and \qquad ways of choosing a third item, and so on. Then the total number of possible outcomes is \qquad $a \cdot b \cdot c$

The probability of an event is: $P($ Event $)=\frac{\text { \# of ways "Event 'can happen }}{\text { Total \# ot possible outcomes }}$
Ex 1) Suppose a license plate can have any three letters followed by any four digits.
a) How many different license plates are possible?

$$
26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10
$$

 Numbers

$$
\begin{aligned}
& 175,760,000 \text { pos? } \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { poo } \\
& \text { possible }
\end{aligned}
$$

b) How many license plates are possible that have no repeated letters or digits?

$$
26 \cdot \frac{1}{25} \cdot \frac{24}{70} \frac{10}{10} \cdot 94 \cdot 000 \text { possible plo }
$$

$78,624,000$ possible plates without repetino
c) What is the probability that a randomly selected license plate has no repeated letters or digits? a thout
PRolate

$$
\begin{aligned}
& \text { w lo }=\frac{78,624,000}{175,760,000} \\
& \text { repitition) } \\
& \frac{370}{845} \approx 0.447 \pi=44.7 \%
\end{aligned}
$$

Permutations

Ex. 2) I have five books I want to arrange (in a particular order) on a shelf.
a) How many different ways can I arrange them?

b) What if I only want to arrange 3 of my 5 books on a shelf? How many ways can I do this?

Whenever you want to know how many ways there are of \qquad some number of items, that's called a \qquad andangein -.

Ex 3: Seven flute players are performing in an ensemble.
a) The names of all seven players are listed in the program in random order. How many different ways could the players' names be listed (i.e., arranged) in the program?

b) How many different ways could the players' names be listed in alphabetical order by last name?

c) If the players' names are listed in the program in random order, what is the probability that the names happen to be in alphabetical order?

d) After the performance, the players are backstage. There is a bench with only room for four to sit. How many possible arrangements are there for four of the seven players to sit on the bench?

AFM Notes, Unit 1 - Probability 1-2 Combinations

Name \qquad
Date \qquad Period

Permutations vs. Combinations (Electing Officers vs. Forming a Committee)
Ex. 1) We want to elect three officers from our club of 25 people. The first person elected will be the President, the second person elected will be the Vice President, and the third person elected will be the Treasurer. How many different "arrangements" of officers can we have?

Permutations

to select from
Ex. 2) We want to form a 3-person committee (i.e., no officers) from our club of 25 people. How many committees can we form? \qquad

When you're counting how many ways there are to aron oe some number of items, 0 does \qquad that's a \qquad -.

When you're counting how many ways there are to simply some number of items,
\qquad does \qquad ; that's a \qquad

Ex. 3) The Debate Club wants to elect four officers (Pres, VP, Sec, and Treas), from its membership of 30 people. How many different ways could the Debate Club elect its officers? Permutation

Ex. 4) The Debate Club wants to create a 4-person committee (i.e., no officers) from its membership of 30 people. How many different committees are possible?

Combinations with Restrictions
Ex. 5) The Young Republicans Club consists of 7 seniors, 9 juniors, and 5 sophomores. They want to form a Planning Committee (i.e., without officers) to plan their spring social. The Planning Committee will consist of 4 members. $=21$
a) How many different 4-member committees are possible? \qquad $2_{1} C_{4}=5,985$
b) How many committees are possible that consist of all sophomores?

c) How many different committees could be formed if the club's president must be one of the members?

d) How many different committees could be formed if the committee must contain exactly two seniors and two juniors?

$s_{1}=36$

AFM Notes, Unit 1 - Probability 1-3 Factorial Notation

Name \qquad
Date \qquad Period \qquad

Ex. 1) I have eight books I want to arrange on a shelf.
a) How many different ways can I arrange the eight books?

1) Using the permutations operation on the calculator ${ }_{8} P_{8}=40,320$
2) Using the Fundamental Principle of Counting $8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40,320$

A third way to express this answer is by using \qquad notation:

$$
8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40,320
$$

b) What if I only want to arrange 3 of my 8 books on a shelf? How many ways can I do this?

Again, we've already discussed two ways to calculate the answer to this problem.

1) Using the permutations operation on the calculator ${ }_{8} P_{3}=336$
2) Using the Fundamental Principle of Counting $8 \cdot 7 \cdot 6=336$

We can also express this answer by using factorial notation

$$
\frac{8!}{5!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=336 \quad 8 P_{3}=\frac{8!}{(8-3)!}=\frac{8!}{5!}=336
$$

This last expression is actually the formula for a permutation. If we want to calculate the number of permutations of n objects taken r at a time, we would write:

$$
n P_{r}=\frac{n}{(n-r)} \text { ! }
$$

Ex. 2) Calculate the expression $120!/ 116$!

$$
\frac{120 \cdot 119 \cdot 118 \cdot 117 \cdot 116 \cdot 115 \cdot 114 \cdot 113}{116 \cdot 115 \cdot 114 \cdot 113}=197,149,680
$$

Ex. 3) Calculate the expression 76!/73!

$$
\begin{aligned}
& \text { Calculate the expression 76!/73! } \\
& \frac{76 \cdot 75 \cdot 74 \cdot 73 \cdot 7 / 2 \cdot 71 \cdot 70}{78 \cdot 72 \cdot 71 \cdot 76}=421,800
\end{aligned}
$$

Ex. 4) Calculate the expression $n!/(n-3)$!

$$
\begin{gathered}
\frac{n \cdot(n-1) \cdot(n-2) \cdot(n-3)(n-4)(n-5)}{(n+3)(n-4)(n+5)} \\
=n(n-1)(n-2) \\
=n^{3}-3 n^{2}+2 n
\end{gathered}
$$

Ex. 5) Calculate the expression ${ }_{n} P_{n-3}$

$$
\begin{aligned}
n_{n-3} & =\frac{n!}{(n-r)!}=\frac{n!}{(a-(n-3))!} \\
& =\frac{n!}{3!}=\frac{n!}{3 \cdot 2 \cdot 1}=\frac{n!}{6}
\end{aligned}
$$

Math

$$
\rightarrow \text { ARB }
$$

\#4
\qquad

1-4 Introduction to Probability

Date \qquad Period \qquad
Probability theory was initially developed in 1654 in a series of letters between two French mathematicians, Blase Pascal and Pierre de Fermat, as a means of determining the fairness of games. It is still used today to make sure that casino customers lose more money than they win, and in many other areas, including setting insurance rates.

At the heart of probability theory is randomneSS. Rolling a die, flipping a coin, drawing a card and spinning a game board spinner are all examples of \qquad . In a random process no individual event is predictable, even though the long range pattern of many individual events often is predictable.

Types of Probability

Experimental - The probabilities based on real -world

 dataTheoretical - The probabilities not based on real-world data.

Calculating Probabilities

When calculating the probability of something happening, the "something" is called an \qquad and the probability of the event happening is written \qquad .

Ex. 1a) The probability of rolling a 3 on a die would be written \qquad . Ex. 1b) The probability of winning the lottery would be written \qquad ven

Probabilities are always expressed as \qquad . The probability of an event that is certain to happen is \qquad , while the probability of an impossible event is \qquad

To calculate a probability, you count the and divide this number by the total \qquad .

Probability of an event: $P(E)=$
\# of ways an event can happen \# of possible outcomes

Example of Theoretical Probability

Ex. 2) A bag contains 4 blue marbles, 6 green marbles and 3 yellow marbles. A marble is drawn at random from the bag.
a) What's the probability of drawing a green marble?
$P($ Green $)=\frac{6}{13}=0.462=46.2 \%$
b) What's the probability of drawing a yellow marble?

$$
0.231=23.1 \%
$$

c) What's the probability of drawing a green $O R$ yellow marble?

$$
P(\text { green ongellow })=
$$

Example of Experimental Probability

\square
Ex. 3) Suppose a study of car accidents and drivers who use mobile phones produced the following data:

Contingency Table	Had a car accident in the last year	Did not have a car accident in the last year	Totals
Driver using mobile phone	45	280	325
Driver not using mobile phone	25	405	430
Totals	70	685	755

This type of table is called a \qquad
The total number of people in the sample is \qquad The row totals are \qquad and 430 The column totals are 70
\qquad and 685 Notice that $325+430=755$ and $70+685=755$ Calculate the following probabilities using the table above:
a) $P($ a driver is a mobile phone user $)=$ \qquad
b) $P($ a driver had no accident in the last year $)=$

90.7%
c) $P($ a driver using a mobile phone had no accident in the last year $)=$

$$
=\frac{280}{325}=0.862=86.2 \%
$$

Name \qquad
1-5 More Probability
Date \qquad
\qquad
A compound probability is a probability involving \qquad two or more events, for example, the probability of Event A AND Event B happening.

Example 1: Coin Flip
What's the probability of flipping a coin twice and having it come up heads both times?

$$
P(\text { Comes up heads })=\frac{\text { \# of ways an "Event' can bappen }}{\text { Total \#of possible outcomes }}
$$

$P\left(1^{\text {st }}\right.$ flip comes up heads AND $2^{\text {nd }}$ flip comes up heads)

$$
=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}=0.25=259
$$

The Multiplication Rule
When calculating the probability of two events, Event A and Event B, if the events are
\qquad dependent , then the probability of both events happening is

Compound Probability and Replacement
Example 2: Marbles
A bag contains 4 blue marbles, 6 green marbles and 3 yellow marbles. If two marbles are drawn at random from the bag, what's the probability of:
a) First drawing a green marble, and then drawing a yellow marble?

With replacement
$P($ Green AND yellow) $=$

$$
=\frac{6}{13} \cdot \frac{3}{13}=\frac{18}{169}=0.107
$$

$$
10.7 \%
$$

b) Drawing two blue marbles?

With replacement
P(Blue And Blue)

$$
\begin{gathered}
=\frac{4}{13} \cdot \frac{4}{13}=\frac{16}{169}=0.095 \\
9.5 \%
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\text { Without replacement }}{P(\text { Green AND yellow) }} \\
= & \frac{6}{13} \cdot \frac{3}{12}=\frac{18}{156} \\
= & 0.115=11.5 \%
\end{aligned}
$$

Without replacement
P(Blue AND BLUE)

$$
=\frac{4}{13} \cdot \frac{3}{12}=\frac{1}{13}=0.077
$$

7.7%

Geometric Probability - a probability that is found by calculating a \qquad ratio of Lengths or \qquad area of a geometric figure.

$$
P(\text { Event })=\frac{\text { \#of ways an "Event" can happen }}{\text { Total \# of possible outcomes }}=\frac{\text { Event Area }}{\text { Total Area }}
$$

Example 3: Geometric Probability of Rectangles
a) What is the probability that a point chosen at random in the rectangle will also be in the square.

$$
\begin{aligned}
P(\text { point in square }) & =\frac{\text { Event Area }}{\text { Total Area }} \\
& =\frac{\text { Area of Square }}{\text { Area of Rectangle }} \\
& =\frac{9}{48}=0.188=18.8 \%
\end{aligned}
$$

(b) What is the probability that a point chosen at random in the rectangle will be in the shaded area?

$$
\begin{aligned}
P(\text { point in shaded region }) & =\frac{\text { Event Area }}{\text { Total Area }}=\frac{\text { Area of Rectangle -Area of Sguan }}{\text { Area of Rectangle }} \\
& =\frac{48-9}{48}=\frac{39}{48}=\frac{13}{16}=0.813=81.3 \%
\end{aligned}
$$

Example 4: Geometric Probability of Circles
The radius of the inner circle is 6 cm , and the radius of the outer circle is 16 cm . Find the probability that a point selected at random in the outer circle will be in the

$$
\begin{aligned}
& \begin{array}{l}
A=\pi r^{2} \\
\text { (a) inner circle } \\
\text { P(innercircle) }
\end{array}=\frac{113.097}{804.248}=0.41 \quad A=\pi 16^{2} \approx 804.248 \\
& 14.1 \% \\
& \begin{aligned}
\text { (b) shaded area } \\
P(\text { outer circle) }
\end{aligned} \\
& =\frac{\text { Area of outer circle-Arec Innercipcle }}{\text { Area of outer Circle }} \\
& \\
& \\
& =\frac{804.248-113.097}{804.248} \\
& \\
&
\end{aligned}
$$

Mutually Exclusive Events
When you roll a die, an event such as rolling a 1 is called a \qquad simple event because it consists of only one event.

An event that consists of two or more simple events is called a. \qquad compound
\qquad . Such as the event of rolling an odd number or a number greater than 5.

Mutually \qquad events \qquad is when two evens cannot occur at the same time. Like the probability of drawing a 2 or an ace is found by adding their individual probabilities.

If two events, A and B, are mutually exclusive, then the probability of A or B occurs is the sum of their probabilities.

$$
P(A \text { or } B)=P(A)+P(B)
$$

Example 5: Two Mutually Exclusive Events
Keisha ha a stack of 8 baseball cards, 5 basketball cards, and 6 soccer cards. If she selects a card at random from a stack, what is the probability that it is a baseball or a soccer card?
$P($ baseball or soccer $)=P($ baseball $)+P(s$ ocker $)$

$$
=\frac{8}{19}+\frac{6}{19}=\frac{14}{19}
$$

The probability that keisha selects baseball or soccer card is about 74%

Example 6: Three Mutually Exclusive Events
There are 7 girls and 6 boys on the junior class homecoming committee. A subcommittee of 4 people is being chosen at random to decide the theme for the class float. What is the probability that the subcommittee will have a least 2 girls?

$$
\begin{aligned}
& \frac{C(7,2) \cdot C(6,2)}{C(13,4)}+\frac{C(7,3) \cdot C(6,1)}{C(13,4)}+\frac{C(7,4) \cdot C(6,0)}{C(13,4)} \\
& =\frac{315}{715}+\frac{210}{715}+\frac{35}{715}=\frac{112}{143}=78 \%
\end{aligned}
$$

Inclusive Events

Since it is possible to draw a card that is both queen and a diamond, these events are not mutually exclusive, they are \qquad events

If two events, A and B, are inclusive, then the probability that A or N occurs is the sum of their probabilities decreased by the probability of both occurring.
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Example 7: Education

The enrollment at Southburg High school is 1400. Suppose 550 students take French, 700 take algebra, and 400 take both French and algebra. What is the probability that a student selected at random takes French or algebra?

$$
\frac{550}{1400}+\frac{700}{1400}-\frac{400}{1400}=\frac{17}{28}=61 \%
$$

Conditional Probability

The probability of an event under the condition that some preceding even has occurred is called conditional probability. The conditional probability that event A occurs given that event B occurs can be represented by $P(A \mid B)$.

The conditional probability of event A, given event B, is defined as

Example 8: Medicine

Refer to the application below. What is the probability that a test subject's hair grew, given that he used the experimental drug?

	Number of Subjects	
	Using Drug	Using Placebo
Hair Growth	1600	1200
No Hair Growth	800	400

$\frac{\frac{1600}{4000}}{\frac{2800}{4000}}=\frac{1600}{2400}=\frac{2}{3}=67 \%$
\qquad
\qquad
\qquad
 can be a table, graph, or equation that links each possible \qquad outcome of an event with its probability of occurring.

- The probability of each outcome must be between \qquad and \qquad .
- The sum of all the probabilities must equal \qquad .

Making a Probability Distribution

Example 1: Bakery

A bakery is trying a new recipe for the fudge deluxe cake. Customers were asked to rate the flavor of the cake on a scale of 1 to 5 , with 1 being not tasty, 3 being okay, and 5 being delicious. Use the frequency distribution show to construct and graph a probability distribution.

Step 1: Find the proabability of each score.

Score, x	Frequency	$P(x)$
1	1	$1 / 50=.02$
2	8	$8 / 50=.16$
3	20	$20 / 50=.40$
4	16	$16 / 50=.32$
5	5	$5 / 50=.10$

50
Step 2: Graph the score versus the probability.

Example 2: Car Sales

A car salesperson tracked the number of cars she sold each day during a 30-day period. Use the frequency distribution of the results to construct and graph a probability didstribution for the random variable x, rounding each proability to the nearest hundreth.

Cars Sold, x	Frequency	$P(x)$
0	20	$2 / 30=0.667$
1	7	$7 / 30=0.233$
2	2	$2 / 30=0.067$
3	1	$1 / 30=0.033$

$$
\begin{aligned}
E V= & P_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}+p_{4} x_{4} \\
\text { sected } & =(.667 * 0)+(.233 * 1)+(.067 * 2) \\
\text { allee } & +(0.033 * 3) \\
& =0+.233+.0335+.099 \\
= & 0.466
\end{aligned}
$$

Expected Value

In a random experiment, the values of the n outcomes are
 and the corresponding probabilities of the outcomes occurring are
 -

The expected value (EV) of the experiment is given by:

To calculate expected value:

- Start with the probability Distribution_ or create it if you don't have it.
- Multiply the value of each \qquad by it's \qquad .
- Add up all those products.
- The sum is the \qquad value

Notes 1-6
Example 3: Fundraisers
At a raffle, 500 tickets are sold at $\$ 1$ each for three prizes of $\$ 100, \$ 50$, and $\$ 10$. What is the expected value of your net gain if you buy a ticket?

Gain, X	$\$ 100-\$ 1$ or $\$ 99$	$\$ 50-\$ 1$ or $\$ 49$	$\$ 10-\$ 1$ or $\$ 9$	$\$ 0-1$ or $-\$ 1$
Probability $P(x)$	$\frac{1}{500}=0.002$	$\frac{1}{500}=0.002$	$\frac{1}{500}=0.002$	$\frac{497}{500}=0.994$

$$
E v=(0.002 * 99)+(0.002 * 49)+(0.002 * 9)+(0.9 .94 *(-1))=-\$ 0.68
$$

Example 4: Water Park
A water park makes $\$ 350,000$ when the weather is normal and loses $\$ 80,000$ per season when there are more bad weather days than normal. If the probability of having more bad weather days than normal this season is 35%, find the park's expected profit.

Gain, x	350,000	$-80,000$
Probability, $P(x)$.65	.35

$$
\begin{aligned}
E V & =(.65 * 350,000)+(.35 *-80,000) \\
& =\$ 199,500
\end{aligned}
$$

Example 5: MP3 Players
Construct a probability distribution and find the expected value:
Students were asked how many MP3 players they own.

Players, x	Frequency	$P(x)$
0	9	0.214
1	17	0.405
2	9	0.214
3	5	0.119
4	2	0.048

$$
\begin{aligned}
E V & \left.=(.214 * 0)+(.405 * 1)+(.2)^{42} 4 * 2\right)+(.119 * 3)+(0.018 * 4) \\
& =1.382
\end{aligned}
$$

Calculator Stat, Enter, Put values in L1, L2, Stat, Cal, 2 varstat Down $\sum x y$

AFM Notes, Unit 1 Probability
1-7 Binomial Theorem

Name Key
Date \qquad Period \qquad
According to the U.S. Census Bureau, ten percent of families have three or more children. If a family has four children, there are six sequences of births of boys and girls that result in two boys and two girls. Find these sequences.
BEG

$B G B G$

BGGB
GBBG

$G G B B$

Pascal's Triangle

You can use the coefficients in powers of \qquad to count the number of possible sequences in in situation such as the one above. Remember that a binomial is a polynomial with \qquad . Expand a few powers of the binomial $b+g$.

The Coefficient 6 of the $b^{2} g^{2}$ in the expansion of $(b+g)^{4}$ gives the number of sequences of births that result in two boys and two girls. As another example the coefficient 4 of the $b^{1} g^{3}$ term gives the number of sequences with one boy and three girls.

Here are some patterns that can be seen in any binomial expansion of the form $(a+b)^{n}$.

1. There are \qquad $n+1$ terms.
2. The exponent n of \qquad $(a+b)^{n}$ is the exponent of a in the first term and the exponent of b in the last term.
3. In successive terms, the exponent of a \qquad by one, and the exponent of b increases by one.
4. The sum of the exponents in each term is \qquad .
5. The coefficients are Symmetric. They \qquad at the beginning of the expansion and \qquad at the end.

The coefficients form a pattern that is often displayed in a triangular formation. This is known as \qquad Pascals Triangle . Notice that each row begins and ends with 1. Each coefficient is the sum of the two coefficients about \dagger in the previous row

$$
\begin{aligned}
& (a+b)^{0} \\
& (a+b)^{1} \\
& (a+b)^{2} \\
& (a+b)^{3} \\
& (a+b)^{4} \\
& (a+b)^{5}
\end{aligned}
$$

1

Example 1: Use Pascal's Triangle
Expand $(x+y)^{7}$
Write two more rows of Pascal's triangle.

Use the patterns of a binomial expression and the coefficients to write the expansion of $(x+y)^{7}$

$$
\begin{aligned}
& (x+y)^{7}=1 x^{7} y^{0}+7 x^{6} y^{1}+21 x^{5} y^{2}+35 x^{4} y^{3}+35 x^{3} y^{4}+21 x^{2} y^{5}+7 x^{1} y^{6}+1 x^{0} y^{7} \\
= & x^{7}+7 x^{6} y+21 x^{5} y^{2}+35 x^{4} y^{3}+35 x^{3} y^{4}+21 x^{2} y^{5}+7 x y^{6}+y^{7}
\end{aligned}
$$

The Binomial Theorem
Another way to show the coefficients in a binomial expansion is to write them in terms of the previous coefficients.
$(a+b)^{0} \quad 1$
$(a+b)^{1}$
1

$(a+b)^{2}$
$(a+b)^{3}$
1
1
$(a+b)^{4} \quad 1 \quad \frac{4}{1}$

$$
\frac{4.2}{1.2} \quad \frac{4.3 .2}{1.2 \cdot 3} \quad \frac{4.3 \cdot 2 \cdot 1}{1 * 2 * 3 * 4}
$$

This pattern provides the coefficients of $(a+b)^{n}$ for any nonnegative integer n. The pattern is summarized in the Binomial Theorem .

If n is a nonnegative integer, then
$(a+b)^{n}=1 a^{n} b^{0}+\frac{n}{1} a^{n-1} b^{1}+\frac{n(n-1)}{1.2} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{n-3} b^{3}+\ldots+1 a^{0} b^{n}$

Example 2: Use the Binomial Theorem
Expand $(a-b)^{6}$
The expansion will have seven terms. Use the sequence $\frac{1}{1} \frac{6}{1} \frac{6}{1} \frac{5}{2} \quad \frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3}$ to find the remaining coefficients.
$(a-b)^{6}=1 a^{6}(-b)^{0}+\frac{6}{1} a^{5}(-b)^{1}+\frac{6 \cdot 5}{1 \cdot 2} a^{4}(-b)^{2}+\frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} a^{3}(-b)^{3}+\ldots+1 a^{0}(-b)^{6}$
$=a^{6}-6 a^{5} b+15 a^{4} b^{2}-20 a^{3} b^{3}+15 a^{2} b^{4}-6 a b^{5}+b^{6}$

That the terms in the middle have the same coefficients, the exponents are reversed
Note:

$$
\text { , as in } 15 a^{4} b^{2} \text { and } 15 a^{2} b^{4}
$$

The factors in the coefficients of binomial expansion involve special products called factorials For example, the product of $4 \cdot 3 \cdot 2 \cdot 1$ is written 4! And is read as 4 factorial . In general, if n is positive integer, then $n!=n(n-1)(n-2)(n-3) \ldots 2 \cdot 1 \quad 0!=1$

Example 3: Factorials
Evaluate $\frac{8!}{3!5!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{3!5!}=\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}=\frac{336}{6}=56$

$(a+b)^{6}=\frac{6!}{6!0!} a^{6} b^{0}+\frac{6!}{5!1!} a^{5} b^{1}+\frac{6!}{3!3!} a^{3} b^{3}+\frac{6!}{2!4!} a^{2} b^{4}+\frac{6!}{1!5!} a^{1} b^{5}+\frac{6!}{0!6!} a^{0} b^{6}$

You can also write this series using sigma notation.

$$
(a+b)^{6}=\sum_{k=0}^{6} \frac{6!}{(6-k)!k!} \cdot a^{6-k} b^{k}
$$

In general, the Binomial Theorem can be written both in factorial notation and in sigma notation.

Example 4: Use a Factorial Form of the Binomial Theorem

$$
\begin{aligned}
& (2 x+y)^{5}=\sum_{k=0}^{5} \frac{5!}{(5-k)!k!} 2 x^{5-k} y^{k} \\
& =\frac{5!}{5!0!}(2 x)^{5} y^{0}+\frac{5!}{4!1!}(2 x)^{4} y^{1}+\frac{5!}{3!2!}(2 x)^{3} y^{2}+\frac{5!}{2!5!}(2 x)^{2} y^{3}+\frac{5!}{1!4!}(2 x)^{4} y^{4}+ \\
& =32 x^{5}+80 x^{4} y+80 x^{3} y^{2}+40 x^{2} y^{3}+10 x y^{4}+y^{5}
\end{aligned}
$$

Sometimes you need to know only a particular term of a binomial expansion. Note that when the Binomial Theorem is written in sigma notation, $k=0$ for the first time, $k=1$ for the second term, and so on. In general, the value of k is always one less than the number of term you are finding.

Example 5: Find a Particular Term
Find the fifth term in the expansion of $(p+q)^{10}$.
First, use the Binomial Theorem to write the expansion in sigma notation.

$$
(p+g)^{10}=\sum_{k=0}^{10} \frac{10!}{(10-k)!k!} p^{10-k} q^{k}
$$

If the fifth term, $k=4$.

$$
\begin{aligned}
& \frac{10!}{(10-k) \cdot k!} p^{10-k} q^{k}=\frac{10!}{(10-4)!(4)!} p^{10-4} q^{4} \\
& =\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} p^{6} g^{4} \\
& =210 p^{6} g^{4}
\end{aligned}
$$

\qquad Key Date \qquad Period \qquad
Conditions of a Binomial Experiment:
A \qquad experiment
\qquad exists if and only if these conditions occur.

- Each trial has exactly two \qquad , or outcomes that can be reduced to two outcomes.
- There must be a \qquad fixed number of trials.
- The out comes of the trial must be \qquad in dependent
- The probabilities in each trial are the \qquad same

Binomial Probability
"Exactly"- binompdf (n, p, r)
"At Most"- Binomedf(n, p, r)
"At Least" - 1 -binomcdf $(n, p, r-1)$
$n=$ \# of trials
$p=$ probability of success in each trial
$r=$ how many successes you expect or predict over all trials
Example: "Exactly" Infection
8 out of 10 people will recover. If a group of 7 people become infected, what is the probability that exactly 3 people will recover?

\[

\]

Example 2: "At Most"
8 coins are tossed. What is the probability of getting at most 3 heads?

$$
\begin{aligned}
& n=8 \\
& p=0.5 \quad \text { binomcdf }(8,0.5,3)=.36 \\
& r=3
\end{aligned} \quad 36 \%
$$

Example 3: "At Least"
For a certain species of mahogany tree, the survival rate is 90%. If 5 trees are planted, what are the probability that at least 2 trees die?

$$
\begin{array}{lr}
n=5 \\
p=0.1 \\
r=2-1
\end{array} \quad 1-\operatorname{binomcdf}(5,0.1,2-1)=0.08146
$$

